TABLE OF CONTENTS

GEORGE VOUTSADAKIS: Secrecy Logic: Protoalgebraic S-Secrecy Logics 3

NORIHIRO KAMIDE: Strong Normalization of a Typed Lambda Calculus for Intuitionistic Bounded Linear-time Temporal Logic 29

JOSEF BERGER, HAJIME ISHIHARA, PETER SCHUSTER: The Weak König Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice 63

KENSIKE KOJIMA: Relational and Neighborhood Semantics for Intuitionistic Modal Logic 87

ROLAND HINNION: Ultrafilters (with Dense Elements) over Closure Spaces 115

GEORGE VOUTSADAKIS: Categorical Abstract Algebraic Logic: Coordinatization is Algebraization 125

GEMMA ROBLES: Paraconsistency and Consistency Understood as the Absence of the Negation of any Implicative Theorem 147

NATALYA TOMOVA: A Lattice of Implicative Extensions of Regular Kleene’s Logics 173

ISSN 0137-2904

Reports on Mathematical Logic

No. 47

Editors:
Pawel M. Idziak
Andrzej Wroński

KRAKÓW 2012
Editorial Board:

Walter Carnielli
Centre of Logic
University of Campinas
Brazil

Michael Dunn
Department of Philosophy
Indiana University
U.S.A.

Josep Maria Font
Institut de Matemtica
Barcelona
Spain

Tomasz Kowalski
Department of Education
University of Cagliari
Italy

Don Pigozzi
Mathematics Department
Iowa State University
U.S.A.

Heinrich Wansing
Dresden University of Technology
Dresden
Germany

Piotr Wojtylak
Institute of Mathematics
Silesian University
Poland

Andrzej Wroński
Department of Logic
Jagiellonian University
Poland

Janusz Czelakowski
Institute of Mathematics
University of Opole
Poland

Wiesław Dziobiak
Department of Mathematics
University of Puerto Rico
U.S.A.

Pawel M. Idziak
Theoretical Computer Science Department
Jagiellonian University
Poland

Hiroakira Ono
Japan Advanced Institute of Science and Technology
Hokkaido
Japan

Alasdair Urquhart
Department of Philosophy
University of Toronto
Canada

Ross Willard
Department of Pure Mathematics
University of Waterloo
Canada

Frank Wolter
Department of Computer Science
University of Leipzig
Germany

Managing Editors:

Ewa Capińska
Department of Logic
Jagiellonian University

Piotr Krzystek
Department of Logic
Jagiellonian University

The REPORTS ON MATHEMATICAL LOGIC editors strive to publish well-written papers presenting new and important research results in logic. Applications of logical methods and concepts in mathematics, mathematical linguistics, theoretical computer science and philosophy are also welcome.

Papers for publication should be written in English, and they should be submitted electronically in TeX and PDF formats.

While preparing a manuscript please consult the articles in recent issues of Reports. As a rule, submitted papers should not exceed 30 pages.

No page charge is made. Twenty five reprints of each contribution are available free of charge.

All correspondence concerning the editorial matters as well as the letters regarding the exchange program and back volumes should be send to

Jagiellonian University
Editors of RML
Grodzka 52
31-044 KRAKÓW
Poland

Internet: http://www.iphils.uj.edu.pl/rml
E-mail: rml@ics.uj.edu.pl
A b s t r a c t. In recent work the notion of a secrecy logic \(\mathcal{S} \) over a given deductive system \(\mathcal{S} \) was introduced. Secrecy logics capture the essential features of structures that are used in performing secrecy-preserving reasoning in practical applications. More precisely, they model knowledge bases that consist of information, part of which is considered known to the user and part of which is to remain secret from the user. \(\mathcal{S} \)-secrecy structures serve as the models of secrecy logics. Several of the universal algebraic and model theoretic properties of the class of \(\mathcal{S} \)-secrecy structures of a given \(\mathcal{S} \)-secrecy logic have already been studied. In this paper, our goal is to show how techniques from the theory of abstract algebraic logic may be used to analyze the structure of a secrecy logic and draw conclusions about its algebraic character. In particular, the notion of a protoalgebraic \(\mathcal{S} \)-secrecy logic is introduced and several characterizing properties are provided. The relationship between protoalgebraic \(\mathcal{S} \)-secrecy logics and the protoalgebraicity of their underlying deductive systems is also investigated.
1. Introduction

In several older and recent works on the security of deductive databases and knowledge bases, secrecy-preserving reasoning is at the forefront of investigations. For instance, Sicherman, de Jonge and van de Riet [16] employ logical censors to either allow or refuse answering a query posed against a complete database with the goal of answering honestly as many queries as possible while at the same time protecting secrets. Bonatti, Kraus and Subrahmanian [9] introduce databases that consist of two parts: in the first part, one finds stored all the object information about the “outside world” whereas, in the second, a multi-modal logic is used to express assumptions about the user’s beliefs concerning the world. Modalities are also used to express and reason about secrets that the database is assumed to conceal from the users. The framework is able to cope with both complete and incomplete databases, where, in the latter, some information is assumed to be unknown. More recently, in a series of papers, Biskup [2] and Biskup and Bonatti [3, 4, 5] deal with the same problem and investigate the relationship of various responding policies under a variety of assumptions comparing the advantages and disadvantages of the techniques of lying and refusal. Again the major goal is to provide as much information as possible to a querying agent while at the same time avoiding disclosure of secret or sensitive information. Similar problems have been investigated in the context of knowledge bases that are assumed to be expressed in some description logic or other decidable fragment of first-order logic in various other works (see, e.g., [17, 1, 10, 11, 18]).

In recent work introduced by the author [19], the common features of all these approaches were abstracted with the goal of initiating an investigation into the structure of the underlying logical systems and their algebraic and model-theoretic properties. A basic assumption is that reasoning is taking place over a fixed given sentential logic or deductive system $\mathcal{S} = \langle \mathcal{L}, \vdash_\mathcal{S} \rangle$. This allows many of the techniques of universal algebra, model theory and abstract algebraic logic to be employed to study the ensuing models. Apart from the underlying logic, in the application of the framework to perform reasoning, there is always given a knowledge base K containing known facts about the “world”. Moreover, part of the information contained in K, denoted by B, is considered to be known to the user, either because it constitutes background information or because the user that queries the
Editorial Board:

Walter Carnielli
Centre of Logic
University of Campinas
Brazil

Janusz Czelakowski
Institute of Mathematics
University of Opole
Poland

Managing Editors:

Ewa Capińska
Department of Logic
Jagiellonian University

Piotr Krzystek
Department of Logic
Jagiellonian University

Michael Dunn
Department of Philosophy
Indiana University
U.S.A.

Wiesław Dziobiak
Department of Mathematics
University of Puerto Rico
U.S.A.

Josep Maria Font
Institut de Matematika
Barcelona
Spain

Pawel M. Idziak
Theoretical Computer Science Department
Jagiellonian University
Poland

Tomasz Kowalski
Department of Education
University of Cagliari
Italy

Hiroakira Ono
Japan Advanced Institute
of Science and Technology
Hokkaido
Japan

Don Pigozzi
Mathematics Department
Iowa State University
U.S.A.

Alasdair Urquhart
Department of Philosophy
University of Toronto
Canada

Heinrich Wansing
Dresden University of Technology
Dresden
Germany

Ross Willard
Department of Pure Mathematics
University of Waterloo
Canada

Piotr Wojtyłak
Institute of Mathematics
Silesian University
Poland

Frank Wolter
Department of Computer Science
University of Leipzig
Germany

Andrzej Wroński
Department of Logic
Jagiellonian University
Poland

The REPORTS ON MATHEMATICAL LOGIC editors strive to publish well-written papers presenting new and important research results in logic. Applications of logical methods and concepts in mathematics, mathematical linguistics, theoretical computer science and philosophy are also welcome.

Papers for publication should be written in English, and they should be submitted electronically in TeX and PDF formats.

While preparing a manuscript please consult the articles in recent issues of Reports. As a rule, submitted papers should not exceed 30 pages.

No page charge is made. Twenty five reprints of each contribution are available free of charge.

All correspondence concerning the editorial matters as well as the letters regarding the exchange program and back volumes should be send to

Jagiellonian University
Editors of RML
Grodzka 52
31-044 KRAKÓW
Poland

Internet: http://www.iphils.uj.edu.pl/rml
E-mail: rml@ics.uj.edu.pl
TABLE OF CONTENTS

GEORGE VOUTSADAKIS: Secrecy Logic: Protoalgebraic *S*-Secrecy Logics 3

NORIHIRO KAMIDE: Strong Normalization of a Typed Lambda Calculus for Intuitionistic Bounded Linear-time Temporal Logic 29

JOSEF BERGER, HAJIME ISHIHARA, PETER SCHUSTER: The Weak König Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice 63

KENSUKE KOJIMA: Relational and Neighborhood Semantics for Intuitionistic Modal Logic 87

ROLAND HINNION: Ultrafilters (with Dense Elements) over Closure Spaces 115

GEORGE VOUTSADAKIS: Categorical Abstract Algebraic Logic: Coordination is Algebraization 125

GEMMA ROBLES: Paraconsistency and Consistency Understood as the Absence of the Negation of any Implicative Theorem 147

NATALYA TOMOVA: A Lattice of Implicative Extensions of Regular Kleene’s Logics 173

Jagiellonian University Press

Reports on Mathematical Logic

No. 47

ISSN 0137-2904

Editors:

Paweł M. Idziak

Andrzej Wróński

KRAKÓW 2012